La NASA logra generar el quinto estado de la materia en el espacio

astronautas

A bordo de la Estación Espacial Internacional (EEI) se logró crear, por primera vez, los llamados condensados de Bose-Einstein (BEC), también conocidos como el quinto estado de la materia. Un estudio a ese respecto fue publicado este jueves en la revista Nature.

Para lograrlo, los astronautas utilizaron el Cold Atom Lab (CAL), un congelador capaz de enfriar átomos en el vacío a temperaturas extremas, apenas una diez mil millonésima de grado por encima del cero absoluto, por lo que tiene la fama de constituirse en uno de los lugares más fríos del universo.

astronautas, quito estado de la materia, estudio cientifico, ciencia, espacio,  cold atom lab
El Cold Atom Lab, a punto de ser empaquetado para viajar al espacio

Los condensados de Bose-Einstein aparecen cuando la temperatura de un conjunto de átomos llega casi al cero absoluto, con lo que luego esas nubes gaseosas de átomos actúan de manera colectiva y no individual. Las predijeron por primera vez Albert Einstein y el matemático y físico indio Satyendra Nath Bose, hace 95 años, pero hasta 1995 este extraño quinto estado de la materia no fue observado en un laboratorio.

Lee también: Titán se aleja de Saturno cien veces más rápido de lo estimado

El problema principal es que en la Tierra la gravedad los arrastra hacia el suelo, haciéndolos desaparecer en fracciones de segundo, mientras que en el espacio pueden permanecer más tiempo. Así, en la microgravedad del espacio los átomos se ralentizan y sus longitudes de onda se alinean, lo que permite estudiar los condensados de Bose-Einstein.

La microgravedad también permitió que los átomos fueran manipulados por campos magnéticos más débiles, acelerando su enfriamiento y permitiendo imágenes más claras.

El experimento con el CAL es solo un primer paso, pero podría contribuir a que algún día esos condensados sean la base de herramientas ultrasensibles para detectar señales débiles de los lugares más recónditos del universo, al igual que fenómenos como las ondas gravitacionales o los agujeros negros.

Un modelo computarizado de un condensado de Bose-Einstein

El autor principal del nuevo estudio, David Aveline, físico del Laboratorio de Propulsión a Chorro de la NASA, comentó a la revista MIT Technology Review, perteneciente al Instituto de Tecnología de Massachusetts (EE.UU.), que desde un punto de vista más práctico el trabajo de su equipo podría ayudar a mejorar sensores inerciales, desde acelerómetrosy sismómetros hasta giroscopios.