La Tierra está rodeada de un enorme campo magnético que la protege de la radiación y las partículas cargadas llegadas del espacio. Muchos animales lo utilizan para orientarse, ya que está cambiando constantemente, motivo que lleva a los geocientíficos a mantenerlo bajo vigilancia.
¿Qué provoca este escudo natural? Pues hasta donde se sabe el núcleo terrestre, de hasta 6.000 kilómetros de profundidad, y la corteza, el terreno en el que estamos. Y hasta ahí, porque el manto del planeta, que se extiende desde 35 hasta 2.900 km por debajo de la superficie se había considerado hasta ahora «magnéticamente muerto».
Pues estábamos equivocados. Según publica un equipo internacional de investigadores de Alemania, Francia, Dinamarca y Estados Unidos en la revista «Nature», una forma de óxido de hierro, la hematita, puede conservar sus propiedades magnéticas incluso en ese gigantesco sándwich geológico.
Te interesa: Bebé genéticamente modificado ya podría estar en brazos de su madre
Lo han descubierto bajo las aguas del Pacífico y puede influir en cómo interpretamos el movimiento de inversión de los polos.
En lo profundo del núcleo metálico de la Tierra, hay una aleación de hierro líquido que dispara los flujos eléctricos. En la corteza más externa, las rocas causan una señal magnética. En las regiones más profundas del interior, sin embargo, se creía que las rocas perdían sus propiedades magnéticas debido a las altas temperaturas y presiones.
Los investigadores analizaron de cerca las principales fuentes potenciales de magnetismo en el manto terrestre: los óxidos de hierro, que tienen una temperatura crítica alta, por encima de la cual el material ya no es magnético.
En el manto, los óxidos de hierro se producen en las losas que están enterradas desde la corteza terrestre hasta el interior como resultado de los cambios tectónicos, un proceso llamado subducción. Pueden alcanzar una profundidad de entre 410 y 660 kilómetros, la llamada zona de transición entre el manto superior e inferior de la Tierra. Anteriormente, sin embargo, nadie había logrado medir las propiedades magnéticas de los óxidos de hierro en las condiciones extremas de presión y temperatura encontradas en esta región.
A más de mil grados
Ahora los científicos han combinado dos métodos para hacerlo. Utilizando lo que se llama una celda de yunque de diamante, exprimieron muestras de tamaño micrométrico de hematita de óxido de hierro entre dos diamantes, y los calentaron con láseres para alcanzar presiones de hasta 90 gigapascales y temperaturas de más de 1.000° C. Los investigadores combinaron este método con la llamada espectroscopia de Mössbauer para probar el estado magnético de las muestras por medio de la radiación de sincrotrón. Esta parte del estudio se llevó a cabo en las instalaciones del sincrotrón ESRF en Grenoble, Francia.
El sorprendente resultado fue que la hematita permaneció magnética hasta una temperatura de alrededor de 925° C, la que prevalece en las losas subducidas debajo de la parte occidental del Pacífico, en la profundidad de la zona de transición de la Tierra. «Como resultado, podemos demostrar que el manto de la Tierra no está tan magnéticamente muerto como se ha asumido hasta ahora», dice la profesora Carmen Sánchez-Valle, del Instituto de Mineralogía de la Universidad de Münster. «Estos hallazgos podrían justificar otras conclusiones relacionadas con todo el campo magnético de la Tierra», agrega.
Inversión de los polos
Al usar satélites y estudiar las rocas, los investigadores observan el campo magnético de la Tierra, así como los cambios locales y regionales en la fuerza magnética. De esta forma saben que los polos geomagnéticos, que no deben confundirse con los polos geográficos, se mueven constantemente. Como resultado de este movimiento, han cambiado de posición entre sí cada 200.000 o 300.000 años en la historia reciente de la Tierra. El último cambio de polos ocurrió hace 780.000 años, y en las últimas décadas los científicos han constatado una aceleración en el movimiento de los polos magnéticos. Esta inversión tendría un efecto profundo en la civilización humana moderna. Aún no se conocen los factores que controlan los movimientos y el giro de los polos magnéticos, así como las direcciones que siguen durante el vuelco, indicó ABC.